

Wastewater Treatment: Reducing Salts Generated During Treatment to Promote Water Re-Use

By: David Calnan
Cherokee Chemical Inc,
(CCI)

Objective

 Cost-effective effluent recovery utilizing chemical pre-treatment to minimize Salts & Total Dissolved Solids (TDS) generation

Basics

- Precipitate: Form insoluble particles in wastewater
- Coagulate: Eliminate colloidal particle dispersion
- Separate: Remove solids from effluent

Precipitation

- Exposing soluble metal ions to specific negative ions forming insoluble compounds
 - Hydroxide: OH⁻ used frequently; price increasing.
 - Sulfides: S²⁻ Stronger bond than hydroxide; H2S Potential
 - LIME, precipitates negative valence ions like Phosphate; adjusts pH, also a coagulant

Hydroxide Precipitation Chart

Limitations of Hydroxide Precipitation

Hydroxides raise pH and increase precipitant dosage

•
$$Zn^{2+} + 2Na(OH) \rightarrow Zn(OH)_2 + 2Na^+$$

- Excessive salts generated high TDS
- Metals precipitate at different pH levels; "amphoteric"
- Chelation: E-Nickel, E-Copper, chelated-alloys (ZnNi)
- Generates hydrophilic sludge
- Hexavalent chromium/metal-cyanides require pretreatment

CHELANTS

Chelate (Greek for "CLAW")

 Polydentate organic-ligands prevent hydroxides from precipitating metals

Alternative Treatments may be required:

Metals reduction:

 Strong reducing agents, electron donors, are used to precipitate divalent metals

Chelant oxidation:

 Strong oxidizers, electron receivers, are used to destabilize chelating agents

Common Chelants

- Ammonium Chloride
- Ammonium Hydroxide
- Ammonium Bifluoride
- Acetylacetone
- Citric Acid
- Chromotropic Acid
- Cyanide
- Diethylenetrinitrilopentaacetic Acid
- Dimeracaptopropanol
- Dimethylglyoxime
- Dipyridyl (2,2-Bipyridine)
- Diphenylthioformic Acid
- Ethylenediamine
- Ethylenediaminetetraacetic Acid (EDTA)
- GLUCANATE
- Hydroxyethylethylenediamin
- Methyl Ethylalamine (MEA)

- Monosodium Phosphate
- Nitrilotriacetic Acid (NTA)
- Phenanthroline
- Phosphoric Acid
- Polyethyleneimine
- Potassium Xanthate
- Rochelle Salts (potassium sodium tartrate)
- Salicylaldoxime
- Sodium Citrate
- Sodium Fluoride
- Sodium Pyrophosphate
- Tartaric Acid
- Thioglycolic Acid
- Thiourea
- Triethanolamine
- Trisodium Phosphate
- Quadrol

Sulfide Precipitation

- Stronger reductant than hydroxide
- Treats the metal, not the chelant
- Precipitates Hexavalent Chromium
- Generates fewer salts
- Less hydrophilic sludge; better de-watering
- Generated sludge passes TCLP (Total Contaminants Leaching Potential) testing

Sulfide Precipitation Chart

Sulfide and Chromium

Chromium reduction - Hexavalent to Trivalent (below)
Trivalent chromium precipitates as chromium hydroxide
[Cr(OH)3]

$$Cr^{+6} + 1.5CaS_2O_3 + 1.5H_2O \rightarrow Cr^{+3} + CaSO_4 + 1.5S + 3H^+$$

- •Cr⁺⁶ = Hexavalent Chromium
- •CaS₂O₃ = Calcium Polysulfide
- •Cr⁺³ = Trivalent Chromium
- •CaSO₄ = Calcium Sulfate
- •S = Sulfur
- •H⁺ = Hydrogen Ion

Fenton Reaction

- •Oxidize non-cyanide (Organic) chelants at a low pH using iron, peroxide, and acid
- •H.J.H Fenton discovery (1894); used to oxidize/treat organic water pollutants phenols, formaldehyde, BTEX, pesticides, etc.

$$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + HO \bullet + OH^-$$

- •Hydroxyl generated is a powerful, non-selective oxidant
- •Oxidizes the highly water soluble salt sodium-Orthophosphite to form Orthophosphate.

Lime Precipitation

One Calcium Ion with Two Hydroxyl Ions

- Reduces Sodium Hydroxide Consumption
- Reduces Sulfates in the Effluent CaSO₄
- Treats Gluconates
- Precipitates Fluorides
- Removes Phosphates Ca₃(PO₄)₂

Solubility Rules

Greater than 0.1 mole/Liter = Soluble
Between 0.1 and 0.01 mole/Liter = Slightly Soluble
Less than 0.01 mole/Liter = Insoluble

- Sodium, potassium, and ammonium salts are soluble
- Nitrates, acetates and perchlorates are soluble
- Most chlorides, bromides and iodides are soluble
- Sulfides, oxides and hydroxides are insoluble
- All sulfates are soluble except barium and CALCIUM

Calcium Sulfate CaSO₄ 9.1 x 10⁻⁶

Coagulation

Adding agglomerating agents (coagulants) de-stabilizes colloidal particles

Colloidal Dispersion:

Intermediate form of matter (suspended microscopic particles) between a true solution and a mixture

Types of Colloids:

- Hydrophilic organic responsible for coloring water
- Hydrophobic mineral negatively charged surfaces;

Mutual repulsion *prevents* agglomeration

Coagulants

Mineral or organic; always cationic; strong charge density; very low molecular weight Organic "polymers":

- Expensive; lower dosage rates
- Minimize caustic consumption = lower TDS
- Does not generate sludge nor promote settling Inorganic "metal salts":
- Inexpensive; higher dosage rates
- Contribute to caustic usage = higher TDS
- Generates sludge and promotes settling

Most waste streams benefit from a blend

SLUDGE DENSIFICATION

- Generates dense, less gelatinous precipitate with superior handling and disposal properties
- Requires slurry recycling to incrementally adjust pH
- Allows for lower saturation ratio of OH ions
- Provides seed crystals for secondary nucleation
- Sludge return increases the reaction rate
- Improves yield of ALL chemicals employed

Reaction Rate

Low concentration = Few collisions

High concentration = More collisions

STEPS FOR WATER RE-USE

Oxidation of Non-Cyanide Chelants

Reduction of Metals

Neutralización

Liquid-Solids Separation

Reverse Osmosis.

OXIDATION

- First Treatment Tank/EQ
 - Combine non-cyanide waste streams
 - Mix with air or return line on transfer pump
- Peroxide:
 - Feed using ORP or by volume
 - Spent chrome as an oxidizer
- Acid:
 - pH below 4.5
 - Spent Acid
- Iron:
 - If required
 - Blended chelant treatments are available

METALS REDUCTION

Second Treatment Tank/pH 1

pH between 3 and 7

Solids Return at 10% of the overall flow rate

Lime for pH adjustment (50ppm by weight)

Sulfide for metals precipitation and chrome reduction

NEUTRALIZATION

 Sodium Hydroxide is fed to maintain a pH between 8.8 and 10.0

 A filtered sample from Neutralization determines effectiveness of overall metals removal

 Pre-Floc is formed; or, low molecular weight cationic coagulant is required

Clarity of settling determines coagulant dosage

SOLIDS SEPARATION

Gravity Settling

- Increased use of inorganic TDS-generating coagulants
- High molecular weight polymers add TDS
- Post-clarification filtration may be required
- Latex-based polymers yield lower residual TDS

Micro-Filtration

- Reduced use of inorganic TDS-generating coagulants
- Lower TSS = Better overall metals removal
- Higher water recovery possible.

REVERSE OSMOSIS

 Reverse Osmosis (RO) may be used to remove the remaining salts in the effluent

 Reduced TDS chemical pre-treatment will allow for 50% to 90% recovery of wastewater

 Reject from RO (Concentrated Brine) may be suitable for discharge; or evaporated for Zero Liquid Discharge" ZLD"

REVERSE OSMOSIS

EFFLUENT EVALUATION

	PRE	CCI				POST	CCI	
lon	Raw Water	Concentrate	Permeate	PERMIT	lon	Raw Water	Concentrate	Permeate
	mg/L	mg/L	mg/L	LIMIT		mg/L	mg/L	mg/L
Cd	0.02	0.08	ND	0.07	Cd	0.01	0.04	ND
Cr	0.67	2.68	0.01	2.30	Cr	0.44	1.76	0.01
Cu	0.88	3.52	0.01	2.00	Cu	0.36	1.44	ND
Ni	1.10	4.40	0.02	1.80	Ni	0.27	1.08	0.01
Zn	1.48	5.92	0.01	1.70	Zn	0.32	1.28	0.01
Ca	2.00	13.32	0.01		Ca	58.93	235.72	0.12
Na	859.69	3438.76	214.92		Na	365.00	1445.70	5.95
SO4	1219.83	4879.32	304.96		SO4	344.71	1188.01	0.69
F	14.24	56.96	3.56		F	4.02	16.08	1.01
NO3	14.20	56.80	3.55		NO3	20.40	79.23	0.93
MISC	233.87	935.48	58.47		MISC	149.56	598.24	37.39
TDS	2347.98	9397.24	585.52		TDS	944.02	2970.34	8.73
рН	7.00	6.31	4.25		рН	7.70	6.70	4.47

Calcium Chloride

TDS

Lime

Emulsion Polymer

Hydrogen Peroxide

Latex Based Polymer

CHEMICAL COSTS

15%

Annual Savings

Disposal Cost

Reducing Agent

Chelate Break

PROGRAM

CAL COST COMPARISON

14,000.00

264.00

Tonnes Per Year

240

\$5,880

\$2,178

\$85,446

\$99,846

Annual Cost

\$14,400

1.600

8,225

8,750

2,917

232

Tonnes Per Year

160

Cost

\$4.240

\$4,853

\$24,938

\$7,408

\$1,917

\$74,962

Annual Cost

\$9,600

\$84,562

\$15,284

6					
Chemical		Curre	ent	Proposed	
	Cost Per	Units Per Year	Annual Cost	Units Per Year	Annual Cos
	L/Kg				
Caustic Soda	\$0.49	98,700.00	\$48,363	49,350	\$24,182
Sulfuric Acid	\$0.54	27,500.00	\$14,850	13,750	\$7,425
Sodium Bisulfite	\$0.81	17,500.00	\$14,175		

\$0.42

\$8.25

\$2.65

\$0.59

\$2.85

\$2.54

\$8.25

Cost Per Tonnes

\$60.00

Total Cost of Current Program

Estimated Annual Savings

Total Cost of Proposed Program

THANK YOU

David Calnan
Technical Sales and Service
CCI-A Chemical Corporation

www.ccichemical.com

David.Calnan@gmail.com

(617) 694-1012